Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.

Identifieur interne : 000092 ( Main/Exploration ); précédent : 000091; suivant : 000093

To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.

Auteurs : Elise D. Hinman [États-Unis] ; Jason D. Fridley [États-Unis]

Source :

RBID : pubmed:29882168

Descripteurs français

English descriptors

Abstract

Many non-native woody plants invade low-light forest understories but differ from native species in leaf phenology and seasonality of photosynthesis. It is unknown whether such differences in assimilation patterns are due to contrasting strategies of energy allocation. In a group of native and invasive species in Eastern North America, we hypothesized that invaders employ a grow-first strategy, prioritizing allocation to new structural biomass over carbon storage compared to native congeners. We also hypothesized that species producing a single spring leaf flush exhibit a more conservative carbon storage strategy than species with continuous leaf production. We measured sugar and starch concentrations (non-structural carbohydrates; NSCs) in spring and fall in the stems and roots of 39 species of native and non-native shrubs in a common garden, and compared these to patterns of leaf production across species. Native species had higher soluble sugar concentrations than invaders, but invaders tended to store more root starch in spring. We found no difference in leaf production between natives and invaders. Determinate species had more soluble sugars than indeterminate species but had lower root starch. We found no relationship between aboveground productivity and carbon storage. Our results suggest that closely related species with contrasting evolutionary histories have different carbon storage strategies, although not necessarily in relation to their growth potential. The higher soluble sugar concentrations of native species may reflect their evolutionary response to historical disturbances, or different interactions with soil microbes, while increased spring root starch in invaders may support fine root or fruit production.

DOI: 10.1007/s00442-018-4177-4
PubMed: 29882168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.</title>
<author>
<name sortKey="Hinman, Elise D" sort="Hinman, Elise D" uniqKey="Hinman E" first="Elise D" last="Hinman">Elise D. Hinman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA. edhinman@syr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244</wicri:regionArea>
<wicri:noRegion>13244</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fridley, Jason D" sort="Fridley, Jason D" uniqKey="Fridley J" first="Jason D" last="Fridley">Jason D. Fridley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244</wicri:regionArea>
<wicri:noRegion>13244</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29882168</idno>
<idno type="pmid">29882168</idno>
<idno type="doi">10.1007/s00442-018-4177-4</idno>
<idno type="wicri:Area/Main/Corpus">000104</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000104</idno>
<idno type="wicri:Area/Main/Curation">000104</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000104</idno>
<idno type="wicri:Area/Main/Exploration">000104</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.</title>
<author>
<name sortKey="Hinman, Elise D" sort="Hinman, Elise D" uniqKey="Hinman E" first="Elise D" last="Hinman">Elise D. Hinman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA. edhinman@syr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244</wicri:regionArea>
<wicri:noRegion>13244</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fridley, Jason D" sort="Fridley, Jason D" uniqKey="Fridley J" first="Jason D" last="Fridley">Jason D. Fridley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244</wicri:regionArea>
<wicri:noRegion>13244</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Forests (MeSH)</term>
<term>Introduced Species (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Espèce introduite (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Forêts (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Forests</term>
<term>Introduced Species</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Espèce introduite</term>
<term>Feuilles de plante</term>
<term>Forêts</term>
<term>Photosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many non-native woody plants invade low-light forest understories but differ from native species in leaf phenology and seasonality of photosynthesis. It is unknown whether such differences in assimilation patterns are due to contrasting strategies of energy allocation. In a group of native and invasive species in Eastern North America, we hypothesized that invaders employ a grow-first strategy, prioritizing allocation to new structural biomass over carbon storage compared to native congeners. We also hypothesized that species producing a single spring leaf flush exhibit a more conservative carbon storage strategy than species with continuous leaf production. We measured sugar and starch concentrations (non-structural carbohydrates; NSCs) in spring and fall in the stems and roots of 39 species of native and non-native shrubs in a common garden, and compared these to patterns of leaf production across species. Native species had higher soluble sugar concentrations than invaders, but invaders tended to store more root starch in spring. We found no difference in leaf production between natives and invaders. Determinate species had more soluble sugars than indeterminate species but had lower root starch. We found no relationship between aboveground productivity and carbon storage. Our results suggest that closely related species with contrasting evolutionary histories have different carbon storage strategies, although not necessarily in relation to their growth potential. The higher soluble sugar concentrations of native species may reflect their evolutionary response to historical disturbances, or different interactions with soil microbes, while increased spring root starch in invaders may support fine root or fruit production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">29882168</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>188</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.</ArticleTitle>
<Pagination>
<MedlinePgn>659-669</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-018-4177-4</ELocationID>
<Abstract>
<AbstractText>Many non-native woody plants invade low-light forest understories but differ from native species in leaf phenology and seasonality of photosynthesis. It is unknown whether such differences in assimilation patterns are due to contrasting strategies of energy allocation. In a group of native and invasive species in Eastern North America, we hypothesized that invaders employ a grow-first strategy, prioritizing allocation to new structural biomass over carbon storage compared to native congeners. We also hypothesized that species producing a single spring leaf flush exhibit a more conservative carbon storage strategy than species with continuous leaf production. We measured sugar and starch concentrations (non-structural carbohydrates; NSCs) in spring and fall in the stems and roots of 39 species of native and non-native shrubs in a common garden, and compared these to patterns of leaf production across species. Native species had higher soluble sugar concentrations than invaders, but invaders tended to store more root starch in spring. We found no difference in leaf production between natives and invaders. Determinate species had more soluble sugars than indeterminate species but had lower root starch. We found no relationship between aboveground productivity and carbon storage. Our results suggest that closely related species with contrasting evolutionary histories have different carbon storage strategies, although not necessarily in relation to their growth potential. The higher soluble sugar concentrations of native species may reflect their evolutionary response to historical disturbances, or different interactions with soil microbes, while increased spring root starch in invaders may support fine root or fruit production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hinman</LastName>
<ForeName>Elise D</ForeName>
<Initials>ED</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5396-1583</Identifier>
<AffiliationInfo>
<Affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA. edhinman@syr.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fridley</LastName>
<ForeName>Jason D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>04293</GrantID>
<Agency>Division of Environmental Biology</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Grants-In-Aid of Research</GrantID>
<Agency>Sigma Xi</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="Y">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="N">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Carbon allocation</Keyword>
<Keyword MajorTopicYN="N">Invasions</Keyword>
<Keyword MajorTopicYN="N">Nonstructural carbohydrates</Keyword>
<Keyword MajorTopicYN="N">Seasonal</Keyword>
<Keyword MajorTopicYN="N">Survival</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29882168</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-018-4177-4</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-018-4177-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26333347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Aug 1;13(8):947-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20576028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Feb 1;37(2):154-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27744381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 08;9(8):e104189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25105975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(11):e3630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Jun 28;12:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22741602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 26;446(7139):1079-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Oct;24(10):1129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:667-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Apr;20(4):452-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28194867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23815090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1433-1442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cryobiology. 1968 Nov-Dec;5(3):160-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5717680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1989 Feb;4(2):41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21227310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Jun;27(6):817-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 17;485(7398):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Physiol. 2013 Nov 05;1(1):cot026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27293610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:33-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Mar;30(3):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25662784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1993 Sep;142(3):488-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19425988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Sep;203(4):1208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25809298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Sep;91(9):2613-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20957956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jul;195(2):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22568553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1993 Dec;13(4):379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14969993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Oct;121(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Feb;13(2):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Hinman, Elise D" sort="Hinman, Elise D" uniqKey="Hinman E" first="Elise D" last="Hinman">Elise D. Hinman</name>
</noRegion>
<name sortKey="Fridley, Jason D" sort="Fridley, Jason D" uniqKey="Fridley J" first="Jason D" last="Fridley">Jason D. Fridley</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000092 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000092 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29882168
   |texte=   To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29882168" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020